Датчик кислорода распиновка проводов

Датчик кислорода распиновка проводов

Как проверить лямбда зонд?

Ford Mondeo I 1993 — 1996

Как проверить лямбда-зонд и признаки не исправности? Подойдет ли Бош универсальный?

  • Машину дергает когда едешь на малых оборотах – 1 ответ

Перво-наперво при выходе из строя и неисправности лябды в поведении авто появляются несколько ощутимых последствий:

  • Увеличенный расход топлива
  • Нестабильная работа двигателя авто (рывки)
  • Нарушается работа катализатора (повышается токсичность)

Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).

На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).

Чем и как можно проверить лямбду

Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.

Сначала ищем провод обогрева:

Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.

Проверка лямбда-зонда тестером

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

Устройство и схема подключения датчика лямбда зонда/кислорода, причины поломок

В современном технократическом мире существует потребность применения специальных устройств, называемых датчиками лямбда зондов, контролирующих концентрацию кислорода в отработанных газах двигателей внутреннего сгорания и котельных агрегатов. Тенденции к ужесточению экологических норм автомобильных выхлопов заставляют производителей автомобилей применять дублирующие датчики для более эффективной работы системы впрыскивания топлива и катализатора уходящих газов.

Описание и назначение устройств

Кислородные датчики, чаще всего, представляют собой гальваническую систему с твердотельным электролитом, который входит в рабочий режим при нагревании свыше 300˚C. Они изготавливаются с применением различных материалов в роли электролита, имеют конструкции в зависимости от назначения.

Название λ-зонды получили из-за обозначения данной греческой буквой коэффициента, отвечающего за избыток воздуха в двигателе внутреннего сгорания. При наилучшей пропорции топлива и воздуха в цилиндре двигателя (достигается максимальный КПД при минимальном расходе топлива), отношение расхода используемой воздушной смеси к стехиометрическому (оптимальному): λ = 1. При данном показателе двигатель автомобиля работает в экономном режиме и достигается наилучшая эффективность катализатора, устраняющего вредные вещества из выхлопных газов.

Назначение датчиков – контроль кислорода либо остаточного топлива в отработанных газах для функционирования ДВС и котлов в экономном режиме и минимизации вредных выбросов угарного газа, оксида азота, углеводородов при помощи автоматики.

В каких системах применяются

Кислородные датчики позволяют измерять объемную долю кислорода в газах, присутствующих после сгорания топлива в ДВС и котлах, работающих на твердом топливе либо метане.

λ- зонды применяются в приборах, измеряющих долю кислорода в уходящих газах котлов на ТЭС и других промышленных предприятиях для наилучшей регулировки КПД сгорания топлива при помощи подачи воздуха в топку, в зависимости от показаний приборов.

Наиболее широкое использование датчики получили в автомобильной промышленности для автоматической регулировки подачи бензиново-воздушной смеси в цилиндры двигателя.

Классификация, устройство и принцип действия

Датчики подразделяют на виды в зависимости от материала активных элементов, наличия системы подогрева, конструктивных особенностей и принципа действия. Рассмотрим существующие типы зондов.

Циркониевые

Для данного типа датчиков в качестве твердого электролита гальванической системы – керамической, проницаемой для ионов кислорода мембраны, служит диоксид циркония, который проявляет рабочие свойства при температуре свыше 300˚С. Наконечник из твердотельного циркония покрывается тонкой прослойкой оксида иттрия для лучшей проходимости атомов кислорода, а с внешней и внутренней стороны, частично покрывается тонким слоем платины, выполняющей функцию электродов. На примере рис.1 рассмотрим λ-зонд в разрезе.

  1. Провода: сигнальный и питания нагревателя.
  2. Контактная пластина нагревательного провода.
  3. Стальной корпус, соединенный с кожухом, вставляемым резьбой в гнездо отверстия выхлопной трубы.
  4. Циркониевый электролит с наружной и внутренней платиновыми электродными пластинами.
  5. Нагреватель.
  6. Керамический теплоизолирующий элемент.
  7. Контактная плоскость.
  8. Металлический корпус с отверстиями для попадания уходящих газов.

Принцип работы

Он довольно прост. Во внутренней камере рабочего элемента с платиновым электродом находится обычный воздух, имеющий стандартную (эталонную) проницаемость кислорода со своим давлением на стенки циркониевого наконечника при его нагреве до 350-400˚С.

На наружный платиновый электрод поступают выхлопные газы, делающие проницаемость переменной величиной, в зависимости от объема кислорода в этих газах. Разность потенциалов на электродах появляется вследствие перемещения ионов кислорода со стороны большего давления в сторону с меньшим давлением.

Резкий перепад напряжения (примерно от 850 мВ до 75 мВ) при изменении наличия кислорода в выхлопе от смеси с излишками топлива и недостатком кислорода (богатой, где λ 1), позволяет делать измерения с погрешностью около 5%.

Титановые

Рабочий элемент этого зонда – диоксид титана. Устройство датчика похоже на циркониевый, только не требует камеры с эталонной смесью воздуха. Принцип работы основан на изменении сопротивления материала при изменении объемной доли кислорода в выхлопе. Чем больше ионов кислорода, тем большее сопротивление возникает в рабочем элементе. Для функционирования системы необходима высокая температура нагрева двуокиси титана (свыше 600˚С) и постоянная подача питания на электронный блок управления – 5В.

Преимущества титановых зондов:

  • Прочность, небольшие размеры.
  • Отсутствие камеры с эталонной сравнительной смесью, что увеличивает их долговечность.
  • Быстрое достижение нагрева и рабочего состояния.

К недостаткам можно отнести более высокую цену, чем у циркониевых, что обусловило отказ производителей автомобилей применять их в современных моделях.

Широкополосные – LSU датчики

При помощи широкого диапазона измерения в областях с различным коэффициентом избытка воздуха (λ 1), кислородные зонды этой конструкции получили универсальное применение в разнообразных типах двигателей (газовых, дизельных, внутреннего сгорания с принудительным зажиганием) и отопительных установках. Широкополосное устройство более точно подает сигнал на электронный блок управления о соотношении наличия кислорода и топлива в уходящих газах ДВС, что позволяет лучше контролировать уровень выхлопов.

По внешнему виду зонд похож на циркониевый, но принцип действия немного другой. Работа системы основана на поддержании постоянной разности потенциалов между электродами в пределах 0,45 В, соответствующей коэффициенту избытка воздушной смеси, равной единице.

Датчик состоит из двух рабочих элементов – циркониевого, выполняющего измерительную функцию и элемента для введения либо выведения кислорода из системы. Между рабочими элементами расположено удлиненное отверстие, размером от 20 до 50 мкм. В отверстии размещены два электрода для измерения и регулировки (накачивающий) объемной доли кислорода. В измерительное отверстие вставлен барьер, отделяющий его от уходящих газов и, регулирующий закачку либо откачку кислорода из него. Циркониевый элемент соприкасается с внешней атмосферой благодаря небольшому приточному каналу.

Если смесь, подающаяся в двигатель, обедненная на топливо, то уходящие газы богаты на кислород и он выводится из отверстия для измерения с помощью плюсового напряжения на выводящий рабочий элемент. В противном случае, на элемент подается напряжение с противоположным знаком, кислород входит в измерительное отверстие.

Электронная схема стремится удержать напряжение 0,45 В через, постоянно меняющееся напряжение на электродах элемента введения/выведения кислорода из системы, чтобы концентрация кислорода в отверстии соответствовала: λ = 1. В датчик вмонтирован нагреватель для достижения температуры 700˚С и выше, в зависимости от типа зонда.

Плюсы

Преимуществом широкополосных зондов можно считать:

  • Широкий диапазон измерений и регулировки кислорода в выхлопе.
  • Быстрый нагрев и приведение в рабочее состояние при запуске авто.
  • Широкий спектр применения.

Следует отметить, что лямбда зонды бывают с 2, 3, 4, 5 выводами. Устройства без подогрева обычно имеют 2 вывода – сигнальный и заземляющий. Широкополосные устройства имеют 5 и более выводов.

Методы диагностики

Диагностику датчиков желательно проводить каждые 10000 км пробега автомобиля либо при первых признаках неисправности зонда, которые описаны ниже.

Мультиметром

Очень часто причиной нерабочего состояния кислородного зонда является повреждение спирали нагревателя либо контакта с нагревателем. Так ли это, легко проверить мультиметром, переключив его в режим работы омметра. Обычно 3 и 4 контакт (в 4-х проводном датчике) подходят к нагревательному элементу. Значение сопротивления должно быть в пределах 4,5 – 5,5 Ом. Если показания превышают данное значение, то зонд требует замены, так как нагревательный элемент вышел из строя.

Для проверки сигнала, поступающего на электронный блок, нужно завести автомобиль, нажать на педаль газа, чтобы подержать двигатель в высокооборотном режиме в течение некоторого времени. Сигнальный провод зонда (обычно черный) подключаем к плюсовому щупу мультиметра, а минусовой щуп, соединяем с «землей», переключаем прибор в режим вольтметра (2000 мВ). При удержании педали газа и резком отпускании, показания прибора должны быть в пределах от 1000 мВ до 100 мВ. Если показания остаются неизменными в пределах 400 – 500 мВ при манипуляции с педалью газа, то зонд неисправен.

Осциллографом

Качество проверки осциллографом проявляется в возможности узнать временной промежуток изменения сигнала выходного напряжения. Для проверки необходимо подсоединить осциллограф к проводу, дающему сигнал на электронный блок (черному). Далее нужно завести двигатель и подождать прогрева до 70˚С. По мере прогрева датчика до 400˚С, прибор начнет показывать волнообразный график. При работе двигателя на оборотах около 3000, прибор должен показывать ровный волнообразный график с нижним пределом уровня сигнала (не менее 0,1 В) и высоким (не более 0,8 — 1 В).

Если на экране прочерчивается график в крайних (верхней или нижней) точках, а также в положении около 0,6 В при максимальной работе двигателя, то λ – зонд неисправен.

Основные причины выхода из строя

Причин поломки датчика кислорода может быть много, среди них, конечно же, и качество применяемого топлива. Рассмотрим главные:

  • Повреждение или встряска зонда вследствие неаккуратной езды (наезда на препятствие, яму).
  • Перегрев зонда из-за неисправности в блоке зажигания.
  • Засорение керамической поверхности продуктами сгорания некачественного бензина.
  • Неисправность в работе двигателя (попадание масла в выхлоп).
  • Замыкание в проводах датчика.

Поломка датчика может происходить постепенно, переводя работу двигателя в режим неправильной работы. На современных машинах стоит второй зонд после катализатора, что улучшает качество работы ДВС и защиту атмосферы от продуктов сгорания топлива.

Нюансы подключения

При поломке устройства, можно установить датчик, который рекомендует завод-изготовитель или похожий циркониевый зонд. Вот основные правила:

  • Цвета проводов датчика различаются, но цвет подающего сигнал на электронную схему, всегда темный.
  • «Земля» бывает желтого, белого, серого оттенков.
  • Для подключения 4-проводного зонда на место 3-проводного – соединяются с «землей» автомобиля провода заземления нагревателя и минусовой сигнальной системы. Провод нагревателя через релейную схему подсоединяется к плюсовому полюсу аккумулятора.

Подключение нового зонда лучше сделает специалист из автосервиса.

Советы и рекомендации

При первых признаках неправильной работы лямбда датчика (машина начинает резко дергаться при начале движения, не так быстро срабатывает педаль газа, на панели должны высвечиваться предупредительные сообщения, перегрев двигателя во время работы, неприятные токсичные газы из выхлопной трубы), необходимо определиться с некоторыми вопросами:

  • Точная установка неисправности зонда.
  • Правильный подбор нового датчика.
  • Не следует поддаваться желанию установить датчик, бывший в употреблении (неизвестен его остаточный ресурс), если хотите сберечь двигатель в хорошем состоянии.
  • Не нужно пытаться разобрать устройство, оно сделано герметично и не ремонтируется.

Желательно покупать оригинальный зонд либо универсальный (для двигателей определенного производителя).

Датчик кислорода распиновка проводов

©А. Пахомов 2007 (aka IS_ 18 , Ижевск)

На написание этого материала натолкнуло обилие вопросов на нашем форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.

Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.

Чтоб не углубляться в дебри и не перегружать читателя информацией, я поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.

Итак, датчик кислорода. Когда-то очень давно он представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся выхлопными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них – подогреватель, один – масса, еще один – сигнал.

Из всех этих выводов нас интересует только сигнальный. Форму напряжения на нем можно увидеть двумя способами:

а) сканером
б) мотортестером, подключив щупы и запустив самописец.

Второй вариант, вообще говоря, предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения – это как раз характеристика исправности датчика.

Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно. Как именно это происходит, в подробностях описано здесь.

На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0 . 45 В. Чтоб быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.

К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0 . 45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.

Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0 . 45 В, примерно до 0 . 1 В. Если кислорода мало, напряжение станет выше, около 0 . 8 – 0 . 9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.

Поняв, как работает датчик, легко осознать методику его проверки. Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р 0131 «Низкий уровень сигнала датчика кислорода 1 ». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна!

Как же нам выяснить, в чем кроется проблема – в датчике или в системе? Очень просто. Смоделируем ту или иную ситуацию.

1 . Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да – то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.

2 . Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.

3 . Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» – а сигнал на датчике не меняется, так и висит на уровне 0 . 45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.

Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.

Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливо-воздушную смесь.

Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом. Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной смеси. Обратите внимание: эквивалентно! Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае – очень хороший помощник диагноста. Как пользоваться извлекаемой с его помощью информацией, описано в этой статье.

1 . Нужно совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда.

2 . Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.

3 . Искусственно смоделировав обедненную или, наоборот, обогащенную смесь и отследив реакцию зонда, можно сделать достоверный вывод о его исправности.

4 . По крутизне перехода напряжения от состояния «богато» к состоянию «бедно» и наоборот легко сделать вывод о состоянии лямбда-зонда и его остаточном ресурсе.

5 . Наличие ошибки, указывающей на дефект лямбда-зонда, отнюдь не является поводом для его замены.

Датчик кислорода распиновка проводов

Компания Аркона, Воронеж

Компания Аркона специализируется на дистрибьюции автозапчастей, автомобильных масел, автохимии, расходных и смазочных материалов для автомобилей иностранного и отечественного производства в Центрально-Черноземном регионе.

Вакансии

В настоящее время актуальных вакансий нет.

Предлагаем вашему вниманию техническую информацию от компании DENSO по установке универсальных кислородных датчиков.

Как правильно установить универсальный кислородный датчик?

1. Обрежьте провода нового кислородного датчика в соответствии с необходимой длиной.

ВАЖНО: Новый датчик, соединенный с имеющимся у вас коннектором, должен быть такой же длины, как и старый датчик с оригинальным коннектором.

2. Обрежьте провод старого кислородного датчика.

3. Зачистите провода нового датчика и коннектора от изоляции примерно на 7 мм каждый.

4. Обожмите стыковые соединения датчика и проводника специальными клещами и закройте термоусадочной трубкой (размер 22–16).

5. Нагревайте горячим воздухом термоусадочную изоляцию до тех пор, пока соединения не будут плотно закрыты.

Как правильно соединить провода кислородных датчиков по цветам?

1. Выясните, каких цветов провода используются на вашем старом датчике.

2. Подберите соответствующий универсальный кислородный датчик DENSO. Для всех датчиков DENSO существует два типа цветовых сочетаний кабелей в зависимости от артикула.

3. Соедините провода согласно данным, приведенным в таблице ниже:

Как самому проверить лямбда-зонд (датчик кислорода) при помощи тестера

Лямбда-зонд, или по другому “Датчик кислорода” – это датчик концентрации кислорода, который контролирует количество кислорода, содержащегося в отработанных газах, то есть контролирует и поддерживает определенные пропорции топлива и воздуха. Лучшее соотношение – 14,7 частей кислорода к 1 части бензина. Если это соотношение будет нарушаться, то это скажется на расходе топлива и мощности мотора.

Признаки неисправности лямбда зонда:

Плавающие обороты на холостом ходу, Автомобиль дергается, слышны нехарактерные для двигателя хлопки Понизилась мощность двигателя, При нажатии на педаль газа замедленная реакция двигателя, Двигатель сильно перегревается, а расход топлива увеличился Выхлопные газы стали более токсичными.

Чтобы избежать серьезных проблем с ремонтом автомобиля, рекомендуется периодически проверять состояние лямбда зонда. Сделать это можно самостоятельно.

Проверка датчика кислорода

Внешний осмотр датчика

Выкрутите датчик из катализатора и осмотрите его внешне на наличие обрыва, оплавления, замыкания контактов. Если здесь всё в порядке проверьте наличие отложений на внутренней части датчика(той, что при вкручивании находится внутри катализатора). Отложения из сажи говорят о богатой смеси топлива, износе двигателя и клапанов или об утечки в выхлопной системе из-за копоти, закрывающей отверстия защитной трубки датчика. Топливо с присадками или содержанием высокого процента свинца приводит к образованию белых или серых отложений на датчике, и в итоге может вывести его из строя.

Если при внешнем осмотре не выявлено никаких признаков неисправности, можно продолжить проверку. Вкручиваем датчик на место.

Перед проверкой поставьте рычаг переключения передач в нейтральное положение!
На колодке разъема кислородного датчика есть 4 контакта:
разъем 1 – сигнал +;
разъем2 – масса;
разъем 3 – подогрев;
разъем 4 – подогрев.

Проверка питания на нагреватель датчика

Включите зажигание, но двигатель не запускайте. Отсоедините разъем колодки датчика от разъема соединительного жгута. Измерьте напряжение на соединительном жгуте. Положительный щуп вольтметра к разъему №4, отрицательный щуп к разъему №2 (масса),

Вольтметр должен показать бортовое напряжение, в случае отсутствия питания проверьте состояние электропроводки.

Проверка сигнального напряжения кислородного датчика

Подсоедините положительный щуп вольтметра к разъему № 1 (сигнал +) , отрицательный щуп к разъему № 2 (масса) . Измерьте вольтметром или тестером напряжение между ними. На холодном двигателе напряжение должно быть 0,1-0,2 В. На горячем двигателе 0,1-0,9 Вольта. Заводите двигатель автомобиля и проконтролируйте изменение сигнального напряжения датчика. Сначала датчик выдаст сигнал с постоянной амплитудой 0,1 – 0,2 В ( режим разомкнутого контура). Когда двигатель прогреется до рабочей температуры 70-80 градусов, напряжение датчика должны колебаться в пределах 0,1 – 0,9 В до 10 раз за секунду (режим замкнутого контура).

Если колебаний в показаниях нет (датчик не переходит в режим замкнутого контура) или же переходит но с большой задержкой, то есть двигатель нагрелся, а показания все равно 0,1 — 0,2 В, то датчик неисправен .

Проверка нагревателя кислородного датчика
Отсоедините разъем колодки датчика от разъема общего жгута. Подключите омметр или тестер в режиме измерения сопротивления на разъемы нагревателя разъем №3 и разъем №4.

Если сопротивление между ними от 10 до 40 Ом, то накальная спираль датчика исправна.

Ставьте лайки, подписывайтесь на канал и Вы узнаете как можно самостоятельно обслуживать свой автомобиль.

Источники:

https://m.etlib.ru/qa/kak-proverit-lyamba-zond-i-priznaki-ne-ispravnostipodojdet-li-bosh-uneversalnyj-2944
https://prodatchik.ru/vidy/datchik-ljambda-zonda/
https://chiptuner.ru/content/pub_23-2/
https://arkona36.ru/ru/stati/vse-stati/138-stati-denso/1281-denso-kak-pravilno-ustanovit-universalnyj-lyambda-zond
https://zen.yandex.ru/media/id/5ad26b05dd2484cb62707560/5ae779408309054af4cc70fd

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Для любых предложений по сайту: [email protected]