8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выбор предохранителя по сечению кабеля

Условия выбора плавких предохранителей

В наше время все большей популярностью пользуются автоматические выключатели (АВ) как иностранных так и отечественных производителей, это в первую очередь связано с тем, что у АВ отсутствуют недостатки предохранителей. Но не смотря на все свои недостатки, предохранители все еще активно используются, так как это наиболее дешевый вариант защиты присоединения.

Например у нас на предприятии, если заказчик не возражает, для защиты двигателей мощностью до 100 кВт, применяются разъединитель-предохранитель, учитывая что короткое замыкание не такое частое явление, предохранитель – это очень хорошее решения для защиты присоединения.

В связи с этим, в этой статье я расскажу как нужно правильно выбирать предохранители с плавкими вставками в соответствии с ПУЭ и другой справочной литературой, чтобы Ваши предохранители срабатывали только при ненормальных режимах работы электроприемников.

При выборе предохранителя, должны выполняться условия:

  • номинальное напряжение предохранителя должно соответствовать напряжению сети:

Uном = Uном.сети (1)

  • номинальный ток отключения предохранителя должен быть не меньше максимального тока к.з. в месте установки:

Iном.откл > Iмакс.кз (2)

Условия выбора плавких вставок:

  • ток плавкой вставки должен быть больше максимального тока защищаемого присоединения:

Iн.вс. > Iраб.макс. (3)

  • при защите одиночного асинхронного двигателя, выбирается ток плавкой вставки с учетом пуска двигателя:

Iн.вс. > Iпуск.дв/k (4)

k – коэффициент, принимается равным 2,5 согласно [Л1. с. 124,125], что соответствует ПУЭ пункт 5.3.56, для электродвигателей с короткозамкнутым ротором при небольшой частоте включений и легких условиях пуска (tп=2-2,5 сек.).

Обычно данный коэффициент принимается для двигателей вентиляторов, насосов, главных приводов металлорежущих станков и механизмов с аналогичным режимом работы.

Для двигателей с тяжелыми условия пуска (tп > 10-20 сек.), например для двигателей мешалок, дробилок, центрифуг, шаровых мельниц и т.п. А также для двигателей с большой частотой включений, т.е. для двигателей кранов и других механизмов повторно-кратковременного режима, коэффициент k принимается равным 1,6 – 2.

Для двигателей с фазным ротором коэффициент k принимается равным 0,8 – 1.

При выборе тока плавкой вставке по условию (4), следует учитывать, что с течением времени защитные свойства вставки ухудшаются, из-за этого есть вероятность ложных сгораний плавкой вставке при пусках двигателей. В результате двигатель может вообще не запуститься, либо работать на 2-х фазах, что приводит к перегреву двигателя.

И если не предусмотрена защита от перегрузки, двигатель может выйти из строя.

Решением данной проблемы, является выбор большего тока плавкой вставки, чем по условию (4), если это допустимо по чувствительности к токам КЗ.

При защите сборки, ток плавкой вставки выбирают по трем условиям:

  • по наибольшему длительному току:

  • при полной нагрузке сборки и пуске наиболее мощного двигателя:

  • при самозапуске двигателей:

где:
k – коэффициент, учитывающий условия пуска двигателя;

— сумма пусковых токов самозапускающих двигателей;

— сумма максимальных рабочих токов электроприемников, кроме двигателя с наибольшим пусковым током Iпуск.макс.;

Для проверки надежного срабатывания предохранителя в конце защищаемой линии, нужно выполнить на кратность тока кз и учитывать время отключения.

В справочной литературе, Вы можете встретить такое утверждение, что для надежного и быстрого перегорания плавкой вставки, требуется чтобы при КЗ в конце защищаемой линии обеспечивалась необходимая кратность тока короткого замыкания, т.е отношение тока короткого замыкания Iкз к номинальному току плавкой вставки Iн.вс.

Данное условие было взято, еще со старого ПУЭ образца 1986 г пункт 1.7.79 ( для невзрывоопасной среды: kкз = Iкз/Iн.вс (kкз >3), данный пункт в ПУЭ 7-издания был изменен, и теперь нужно учитывать время отключения в системе TN, согласно таблицы 1.7.1.

Для взрывоопасной среды, согласно ПУЭ 7-издание пункт 7.3.139, должно выполнятся условие кратности тока кз: kкз = Iкз/Iн.вс (kкз >4). Данный пункт остался без изменения, если сравнивать с ПУЭ 1986 г, что весьма странно, если учитывать что изменился пункт 1.7.79.

Если Вам неизвестны значения пусковых токов двигателя, то в порядке исключений, можно выбрать номинальные токи плавких вставок для двигателей мощность до 100 кВт и частотой пусков не более 10-15 в час следующим образом [Л2. с. 15]:

  • при Uн.сети = 500 В Iн.вс = 4,5*Рн;
  • при Uн.сети = 380 В Iн.вс = 6*Рн;
  • при Uн.сети = 220 В Iн.вс = 10,5*Рн.

После того как Вы выбрали предохранитель, нужно выполнить проверку селективности (избирательности) последовательно включенных между собой предохранителей с учетом защитных характеристик.

Это означает, что при коротком замыкании должна перегореть только та плавка вставка и того предохранителя, который находиться ближе всего к месту повреждения. Как показывает практика, для обеспечения селективности между двумя последовательно включенными предохранителями. Нужно чтобы предохранители между собой отличались на две ступени по шкале номинальных токов. При этом вставки, должны иметь одинаковые защитные характеристики, поэтому нужно выбирать предохранители одного типа.

Вот в принципе и все, что Вам нужно знать про выбор плавких предохранителей, если данной информации Вам не достаточно, рекомендую ознакомится с литературой, которую я использовал при написании данной статьи. В следующей статье, я приведу примеры выбора плавких предохранителей для различных электроприемников.

1. А.В. Беляев. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. Энергоатомиздат, Ленинградское отделение, 1988 г. Выпуск 617.
2. Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.
3. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.

Примеры выбора плавких предохранителей и автоматических выключателей

Пример 1. Магистральная линия силовой сети промышленного предприятия напряжением 380/220 В питает группу электродвигателей. Линия прокладывается в помещении бронированным трехжильным кабелем с алюминиевыми жилами и бумажной изоляцией при температуре окружающей среды 25°С. Длительный расчетный ток линии составляет 100 А, а кратковременный ток при пуске двигателей 500 А. Пуск легкий.

Необходимо определить номинальный ток плавких вставок предохранителей типа ПН2, защищающих линию, и выбрать сечение кабеля для следующих условий:

а) производственное помещение невзрывоопасное и непожароопасное, линия должна быть защищена от перегрузки;

б) помещение пожароопасное, линия должна быть защищена от перегрузки;

в) линия должна быть защищена только от токов КЗ.

Решение. Определяем величину номинального тока плавких вставок предохранителей, защищающих линию, по длительному току: I вст = 100 А, по кратковременному току: I вст = 500/2,5 = 200 А. Предохранитель типа ПН2-250 с плавкой вставкой на 200 А.

1. Для кабеля с бумажной изоляцией, защищаемого от перегрузки и проходящего в невзрывоопасном и непожароопасном помещении, значение коэффициента защиты k з = 1. При этом длительно допустимая токовая нагрузка на кабель I доп = k з I з = 1х200 = 200 А.

Подбираем трехжильный кабель на напряжение до 3 кВ с алюминиевыми жилами сечением 120 мм 2 для прокладки на воздухе, для которого допустимая нагрузка I доп = 220 А.

2. Для кабеля, проходящего в пожароопасном помещении и защищаемого от перегрузки k2 = 1,25, тогда I доп = 1,25, I3 = 1,25 х 200 = 250 А. В этом случае сечение кабеля принимаем равным 150 мм 2 , I доп = 255 А.

3. Для кабеля, защищаемого только от токов КЗ, получим при k з = 0,33 допустимый ток I доп = 0,33 I вст = 0,33 х 200 = 66 А, что соответствует сечению кабеля 50 мм и I доп = 120.

Пример 2. От шин главного распределительного щита получает питание силовой распределительный щит с автоматическими выключателями, к которому присоединяются шесть асинхронных электродвигателей с короткозамкнутым ротором. Электродвигатели 3 и 4 установлены во взрывоопасном помещении класса В1а, остальные электродвигатели, распределительные пункты и пусковая аппаратура — в помещении с нормальной средой. Технические данные электродвигателей приведены в табл. 1 .

Табл. 1. Технические данные электродвигателей

Режим работы двигателей исключает возможность длительных перегрузок, условия пуска легкие, самозапуск крупных двигателей исключен. Один из двигателей (1 или 2) находится в резерве, остальные двигатели могут работать одновременно.

Рис. 2. Схема к примеру 2

Требуется определить номинальные токи расцепителей автоматических выключателей и выбрать сечения проводов и кабеля из условий нагрева и соответствия токам расцепителей.

Решение. Так как температура воздуха в помещениях равна 25°С, то поправочный коэффициент k п = 1, что учитывается при выборе сечений проводов и кабеля.

Линия к электродвигателю 1 (или 2). Выбираем комбинированный расцепитель (автоматический выключатель типа А3710Б на 160 А по длительному току линии I д = 73,1 А, равному в данном случае номинальному току электродвигателей (табл. 1 ).

При выборе номинального тока электромагнитного расцепителя автоматического выключателя, встроенного в шкаф, следует учитывать тепловой поправочный коэффициент 0,85. Таким образом, I ном эл = 73,1/0,85 = 86 А.

Выбираем расцепитель с номинальным током 100 А и током мгновенного срабатывания 1600 А.

Устанавливаем невозможность срабатывания автомата при пуске: I ср.эл= 1,25 х 437 = 550 А, 1600 А > 550 А.

Подбираем одножильный провод с алюминиевыми жилами марки АПРТО сечением 25 мм 2 , для которого допустимая токовая нагрузка равна 80 А. Проверяем выбранное сечение по коэффициенту защиты аппарата. Так как в автоматических выключателях серии A3700 ток уставки не регулируется, то кратность допустимого тока линии должна определяться по отношению к номинальному току расщепителя, в данном случае равному 100 А. Находим значение k з для сетей, не требующих защиты от перегрузки для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависимой от тока характеристикой k з=1.

Читать еще:  Замена термостата ваз 21214

Подставляя числовые значения в соотношение kз I з = 1х100 А > I доп = 80 А, находим, что требуемое условие не выполняется.

Поэтому окончательно выбираем сечение провода равным 50 мм 2 / I доп = 130 А, для которого условие I доп > k з I з выполняется, так как 130 А > 1 х 100 А.

Линия к электродвигателю 3. Двигатель 3 установлен во взрывоопасном помещении класса В1а, в связи с чем:

1) за расчетный ток при выборе сечения линии принимается номинальный ток двигателя, увеличенный в 1,25 раза;

2) не разрешается применение проводов и кабелей с алюминиевыми жилами; следовательно, линия от магнитного пускателя до электродвигателя должна быть выполнена проводом с медными жилами (марки ПРТО).

Линия к электродвигателю 4. Сечение провода ПРТО от магнитного пускателя до двигателя принято равным 2,5 мм 2 , так как меньшее сечение для силовых сетей во взрывоопасных помещениях не допускается ПУЭ.

Линии к электродвигателям 5 и б. Расчетный ток линии определяется суммой токов двигателей 5 и 6.

Магистральная линия. Расчетная длительно допустимая токовая нагрузка линии определяется суммой токов всех электродвигателей, за исключением тока одного из электродвигателей (1 или 2): I дл = 73,1 + 69 + 10,5 + 2 х 7,7 = 168 А. Кратковременная токовая нагрузка определяется из условий пуска двигателя 3, у которого толчок пускового тока наибольший: I кр = 448 + 73,1 + 10,5 + 2 х 7,7 = 547 А.

Выбираем электромагнитный расцепитель автоматического выключателя АВМ-4С на 400 А по длительному току линии из условия I ном = 400 А > I дл = 168 А.

Кратковременная токовая нагрузка определяется из условий пуска двигателя 3, у которого толчок пускового тока наибольший:

I кр = 448+73,1 + 10,5+ 2-7,7 = 547 А.

Выбираем ток срабатывания по шкале, зависимой от тока характеристики, 250 А и по шкале, не зависимой от тока характеристики (отсечка с выдержкой времени) 1600 А.

Устанавливаем невозможность срабатывания автоматического выключателя при пуске двигателя 3I срэл= 1,25 I кр, 1600 > 1,25х547 = 682 А.

По длительному току линии I дл = 168 А подбираем трехжильный кабель с алюминиевыми жилами на напряжение до 3 кВ сечением 95 мм 2 , с допустимой нагрузкой 190 А.

Для сетей, не требующих защиты от перегрузки, при токе срабатывания расцепителя автоматического выключателя с регулируемой, обратно зависимой от тока характеристикой I ср.эл = 250 А и k2 = 0,66, I доп > k 3I з = 190 > 0,66 х 250 = 165 А.

Следовательно, требуемое условие выполняется. Расчетные данные примера приведены в табл. 2.

Выбираем диаметр провода предохранителя – разбираем все тонкости вопроса

Самодельный предохранитель из медной проволоки может стать отличным временным способом заменить перегоревший предохранитель. Но если вы решились на такое, то крайне важно правильно подобрать сечение того самого проводника, который вы будете использовать. Почему это важно, каковы причины перегорания предохранителей и способы временного устранения этого неудобства мы и рассмотрим в нашей статье.

Причины перегорания предохранителей

Начнем с самого важного — с причин перегорания предохранителей. Ведь просто так нечего не происходит и прежде чем ставить «жучек», необходимо определиться с причинами поломки предохранителя.

Их может быть несколько:

Выбор диаметра проволоки и ремонт предохранителя

Ну, а теперь давайте перейдет к основному вопросу нашей статьи – выбору диаметра и непосредственно ремонту. Начнем с первого.

Выбор диаметра проводника

Диаметр проводника в предохранителях четко рассчитан. Если вы выполняете замену, то должны установить проводник такого же диаметра. Иначе ваш предохранитель не будет выполнять свою функцию по защите электрической сети.

  • Сделать это можно несколькими способами. Наиболее простой взять сечение провода для предохранителя, и таблица стандартных значений позволит осуществить вам выбор. Для этого достаточно измерить диаметр провода.

  • Диаметр провода можно измерить с помощью штангенциркуля или даже обычной линейки. Если диаметр проволоки для предохранителя слишком мал, то измерения можно произвести следующим образом. Проволоку наматываем на любой небольшой предмет – зажигалку, карандаш, ручку.

  • Желательно сделать 10-20 витков, для большей точности измерения. Витки делаем максимально плотными, для исключения пространства межу ними. Затем измеряем диаметр всех витков. Полученное значение делим на количество витков. Вот вам и диаметр провода для предохранителя.

Обратите внимание! При данном способе измерения диаметра у вас наверняка будет небольшая погрешность, связанная с недостаточной плотностью витков. Поэтому полученное число округляем для ближайшего меньшего.

  • Расчет предохранителя из медной проволоки можно произвести и для значений, не указанных в таблице. Для этого нам необходимо знать требуемый ток плавкой вставки и материал проволоки.
  • Для того чтобы вычислить диаметр медной проволоки для предохранителя до 7А, нам следует воспользоваться приведенной ниже формулой. В этой формуле d – рассчитываемый диаметр, Iпл – требуемый ток плавкой вставки, k – коэффициент учитывающий материал проволоки. Для меди он составляет 0,034.

  • Если вы хотите своими руками вычислить диаметр проволоки для вставки на номинал выше 7А, то вам следует воспользоваться формулой, приведенной ниже. В этой формуле m – коэффициент учитывающий материал проволоки. Для меди он равен 80.

  • Если толщина провода для предохранителя в результате расчета или выбора по таблице получилась таковой, какой нет в наличии. То можно добиться требуемого диаметра за счет соединения нескольких проволок разного сечения. Хотя этот вариант и несколько хуже.

Ремонт предохранителей

Установка вместо калиброванной плавкой вставки в предохранитель проволоки в простонародье называется установкой «жучка». Любой «жучек», согласно нормам ПУЭ, недопустим, так как не всегда способен качественно защитить электроустановку.

Тем не менее к такому способу ремонта предохранителей прибегают достаточно часто. Особенно когда под рукой нет запасного предохранителя.

  • Установка «жучка» вместо предохранителя зависит от его типа. Если это трубчатый предохранитель на большой номинальный ток, то такие изделия обычно имеют разборную конструкцию как на видео.

  • То есть, предохранитель можно раскрутить. Изъять перегоревшую плавкую вставку и вместо нее установить предохранитель из медного провода.
  • С изделиями меньших номиналов все немного сложнее. Обычно они изготавливаются неразборными, в связи с чем придётся повозиться.

  • Если перед вами трубчатый предохранитель стеклянного или керамического типа, то они обычно имеют металлические оконцовки. Для установки «жучка» их необходимо просверлить с двух сторон и в полученную полость вставить наш проводник. Отверстие вместе с проводником желательно затем запаять.
  • С ножевыми предохранителями выполнить ремонт своими руками несколько сложнее. Тут просверлить отверстие не получится, так как крепить провод необходимо к ножам, которые скрыты под корпусом. В этом случае сечение провода предохранителя на 10 А или другого номинала крепят непосредственно на ножи перед корпусом. А затем устанавливают предохранитель.

Обратите внимание! Такой способ намного опаснее. Так как при перегорании провода возможно его разбрызгивание по соседнему оборудованию. К пожару это может и не привести, но повредить оборудование может.

  • Именно, исходя из этих причин, наша инструкция не советует наматывать проволоку непосредственно на контакты-держатели предохранителей. Это же касается намотки провода поверху корпуса трубчатого предохранителя.

  • Отдельный вопрос — предохранители с наполнителем. Наполнитель необходим для более быстрого погасания электрической дуги. Обычно такие изделия имеют разборную конструкцию и для них необходима такая же толщина проволоки для предохранителя, как и для других трубчатых изделий. Песок же, который находится внутри изделия, сначала ссыпаем, а затем опять засыпаем в предохранитель.

Вывод

Диаметр провода для предохранителей зависит от номинального тока изделия и от материала используемого провода. Подобрать или рассчитать этот диаметр не так уж сложно. Но такая починка является лишь временной мерой.

ПУЭ не зря требует использования лишь калиброванных вставок, а что касается неразборных предохранителей с небольшим номинальным током, то их цена не столь высока, чтобы рисковать дорогостоящим оборудованием. Поэтому при первой возможности обязательно замените «жучок» на нормальный предохранитель или калиброванную вставку.

Плавкий предохранитель
Выбор проволоки для ремонта

Плавкий предохранитель – это установочное изделие, предназначенное для защиты электроприборов путем отключения подачи на них электроэнергии при превышении допустимой величины тока способом расплавления установленной в предохранителе калиброванной проволоки.

Для защиты электрической проводки и дорогостоящей радиоаппаратуры от короткого замыкания, бросков тока в питающей сети и обеспечения безопасной эксплуатации электроприборов широко используются плавкие вставки – предохранители. Они выпускаются разных конструкций, типоразмеров и на любые токи защиты.

Рассмотренная технология ремонта предохранителей при соблюдении всех условий обеспечит его защитную функцию. Но не каждый имеет опыт работы с паяльником и измерения диаметра проволоки. Да и в любом случае предохранитель промышленного изготовления будет работать надежнее.

Квартирную электропроводку раньше тоже защищали исключительно с помощью плавких предохранителей, установленных в пробки. В настоящее время для защиты электропроводки применяются более надежные многоразовые приборы защиты от коротких замыканий – автоматические выключатели. В электроприборах же, более лучшей защиты от коротких замыканий, чем плавкий предохранитель пока ничего не придумали. Особенно актуально применение плавких предохранителей в автомобилях, так как они являются единственным надежным и дешевым средством защиты от короткого замыкания.

Читать еще:  Какой мотор на гранте не гнет клапана

Условное графическое обозначение
плавкого предохранителя

Условное графическое обозначение плавкого предохранителя на схемах похоже на обозначения сопротивления, и отличается только тем, что через середину прямоугольника линия проходит не разрываясь. Рядом с условным обозначением обычно пишется и буквенное обозначение Пр. или F. Иногда на схемах просто пишут thermal fuse или fuse. После буквы часто указывают ток защиты предохранителя, например F 1 А, обозначает, что в схеме установлен предохранитель на ток защиты 1 ампер.

При эксплуатации предохранители выходят из строя, и их приходится заменять новыми. Считается, что предохранители ремонту не подлежат. Но если к делу ремонта подойти грамотно, то практически любой предохранитель можно с успехом отремонтировать и использовать повторно. Ведь корпус предохранителя остается целым, а перегорает только тонкая калиброванная проволока, размещенная внутри корпуса. Если перегоревшую проволоку заменить на такую же, то предохранитель сможет служить дальше.

Принцип работы предохранителя на видеоролике

При прохождении электрического тока меньше предельно допустимого, калиброванная проволока, соединяющая контакты предохранителя, нагревается до температуры около 70˚С. В случае превышения тока номинала предохранителя, проволока начинает нагреваться сильнее и при достижении температуры плавления металла, из которого она сделана – расплавляется, электрическая цепь разрывается, и течение тока прекращается.

Поэтому предохранитель и назвали плавким или плавкой вставкой. Видеоролик представлен в замедленном виде, для того, чтобы было хорошо видно, как происходит перегорание провода в предохранителе. В реальных условиях провод в предохранителе перегорает практически мгновенно.

Предохранитель защищает от превышения тока в цепи и, не имеет значения напряжение питающей сети, в которой он установлен, это может быть батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу – при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.

Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.

Многие думают, что предохранитель ремонту не подлежит. Но это не совсем так. В экстренной ситуации, когда под рукой нет запасного и, например, из-за отказавшегося работать авто в пути или усилителя, и срывается музыкальное сопровождение школьного бала или свадьбы, а все магазины уже закрыты, выбирать не приходится.

При грамотном подходе можно с успехом восстановить для временного использования до замены новым перегоревший предохранитель, сохранив его защитные функции. Зачастую такие проблемы решают банальным замыканием контактов держателя предохранителя любой попавшейся проволокой, а еще хуже, просто вставляют вместо предохранителя гвоздь или кусок толстой проволоки. Такое решение может окончательно все испортить и способствует возникновению пожара.

Типы плавких предохранителей

По назначению и конструкции плавкие предохранители бывают следующих типов:

  • Вилочные (в основном применяются для защиты электропроводки и приборов в автомобилях);
  • С слаботочными вставками для защиты электроприборов с током потребления до 6 ампер;
  • Пробковые (устанавливаются в щитках жилых домов, рассчитаны на ток защиты до 63 ампер);
  • Ножевые (применяются в промышленности для защиты сетей при токе потребления до 1250 ампер);
  • Газогенерирующие;
  • Кварцевые.

Рассмотренная в статье технология ремонта предназначена для восстановления вилочных, со слаботочными вставками, пробковых и ножевого типа предохранителей.

Трубчатые плавкие предохранители

Предохранитель трубчатой конструкции представляет собой стеклянную или керамическую трубочку, закрытую с торцов металлическими колпачками, которые соединены между собой проволокой калиброванной по диаметру, проходящей внутри трубочки. Внешний вид трубчатых плавких предохранителей Вы видите на фотографии.

К колпачкам проволока приваривается точечной сваркой или припаивается припоем. В предохранителях, рассчитанных на очень большие токи, часто полость внутри трубочки заполняют кварцевым песком.

Автомобильные плавкие предохранители

Предохранители в автомобилях выходят из строя очень редко. Обычно только в случаях, когда отказывает оборудование. Чаще всего при перегорании лампочек у фар. Дело в том, что когда обрывается нить накаливания у лампочки, образуется Вольтова дуга, нить при этом сгорает и становится короче, сопротивление резко уменьшается и величина тока многократно увеличивается.

Бывает, плавкий предохранитель в автомобиле сгорает и при заклинивании стеклоочистителей. Реже при коротких замыканиях в электропроводке. На фотографии Вы видите широко применяемые автомобильные плавкие предохранители ножевого (вилочного) типа. Под каждым предохранителем приведен ток его защиты в амперах.

Перегоревший предохранитель в авто положено заменять предохранителем такого же номинала, но можно его и отремонтировать, заменив перегоревший в предохранителе провод медным соответствующего диаметра. Напряжение бортовой сети автомобиля значения не имеет. Главное – соответствие тока защиты. Если трудно определить номинал сгоревшего авто предохранителя, то можно воспользоваться цветовой маркировкой.

Таблица сечений кабеля, предохранителей

Опции темы
Поиск по теме
Отображение
  • Линейный вид
  • Комбинированный вид
  • Древовидный вид

Таблица сечений кабеля, предохранителей

Если Вы впервые на нашем Форуме:

  1. Обратите внимание на список полезных тем в первом сообщении.
  2. Термины и наиболее популярные модели в сообщениях подсвечиваются быстрыми подсказками и ссылками на соответствующие статьи в МагВикипедии и Каталоге.
  3. Для изучения Форума не обязательно регистрироваться — практически весь профильный контент, включая файлы, картинки и видео, открыты для гостей.

Re: Таблица сечений кабеля, предохранителей

Рекомендации по монтажу проводов питания (12В) изделий

1. Основные ограничения1.1. Максимально-допустимое падение напряжения на проводах на участке от блока питания до любого изделия — 1В.
1.2. Для подключения питания непосредственно к клеммам изделий рекомендуется использовать провод сечением не более 1,5 мм2.

2. Справочные данные
Сопротивление 100м медного провода (двойного):
а) для провода сечением 0,35мм2 — 10,3 Ом,
б) для провода сечением 9,0мм2 — 0,4 Ом.
В промежутке между этими значениями — обратно пропорционально сечению провода.

3. Минимально-допустимое сечение провода в зависимости от суммарного тока нагрузки и длины провода питания
Для случая монтажа линии питания проводом единого сечения последовательным обходом всех изделий существует следующее общее выражение:
Smin = 0,035 * (i1*L1+ i2*L2+… + ik*Lk), где
L1, L2, … Lk , — значения длины участка провода питания от блока питания до каждого из изделий, м;
i1, i2, ik -токи потребления изделий, включая токи нагрузок, которые питаются через клеммы изделия (замки, сирены, считыватели и т.д.), А;
Smin — минимально-допустимое сечение провода, мм2.

Если токи потребления изделий равны и составляют iср , то выражение упрощается и принимает следующий вид
Smin=0,035 * iср * (L1+ L2+… +Lk).

Ниже приведена таблица значений сечения провода для случая, когда вся нагрузка сосредоточена на конце провода питания.

При равномерном распределении изделий по длине провода питания его сечение может быть уменьшено по отношению к приведенным в таблице в 2 раза.

При неравномерном распределении изделий или при неодинаковых токах потребления для расчета сечения провода следует пользоваться вышеприведенными формулами.

Если для монтажа цепей питания требуется провод сечением больше, чем 1,5 мм2, то рекомендуется разделить нагрузки на группы таким образом, чтобы к каждой группе можно было подвести питание отдельным лучом проводом сечением не более 1,5 мм2.

Если монтаж цепей питания проведен проводом сечением больше, чем 1,5 мм2, то для непосредственного подключения цепи к плате изделий необходимо применять отводы из провода 0,75-1,5 мм2 длиной не более 2м.

Подбор сечения силового кабеля.

Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под
давлением. Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени
через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в роцессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.

1 Ом = 1 Вольт /1 Ампер

Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
что с увеличением длины проводника сопротивление растет.

Читать еще:  Как сделать лежачий полицейский своими руками

Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета
сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
35 Вт х 4 = 140 Вт. (средняя мощность)

Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
140 Вт х 2

280 Вт. (максимальная мощность)

Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
Ампер = Ватт/Вольт.

Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
280 Вт /13 В = 21.53 A

Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов.

СОВЕТ
Memory 12V+

В современных авто магнитолах применяется несколько проводов питания: для питания усилителя мощности, для включения подсветки при включении габаритов автомобиля, для питания памяти и т.д. провод, питающий усилитель мощности, имеет обычно толстое сечение и на нем установлен мощный предохранитель — это основное питание авто магнитолы.(обычно красный) провод меньшего сечения, часто имеющий предохранитель с малым током сгорания , необходим для питания памяти автомагнитолы . Обычно это аппаратура среднего и высокого класса, имеющие цифровую шкалу настройки и память, куда заносится информация о настройке радиоприемника на станции, что позволяет вести бес поисковый прием станций набрав только номер станции (кнопка). Еще один вариант , где применяется дополнительный провод это приемники с возможностью кодирования и чтобы не вносить код доступа при каждом включении применяется микросхема памяти, питающаяся от аккумулятора отдельным проводом.(может быть желтого цвета или красный, но малого сечения). Из этого следует: чтобы авто магнитола работала правильно надо тонкий провод питания подключать напрямую (без каких-либо коммутаций) это и есть провод «Memory 12V+ » к аккумулятору, а толстый провод можно подключать через коммутирующие элементы как замок зажигания или дополнительный выключатель.

Re: Таблица сечений кабеля, предохранителей

И так все же 12 или 13? Автор сам не определился и вводит всех в заблуждение. Напряжение номинальное таки +12В, все что выше- избыточное напряжение, выдаваемое генератором с целью перекрыть не только все, что работает в машине, но и зарядку аккумулятора. Любая аппаратура таки имеет стабилизаторы напряжения, ибо от скачков и просадок никто не застрахован. А посему принимать в расчетах лучше 12В- лучше перебдеть, чем недобдеть, ведь мы не хотим ошибочно проложить кабель на мЕньший ток?

Re: Таблица сечений кабеля, предохранителей

информация по КГ

Re: Таблица сечений кабеля, предохранителей

Красивые цифры! Один вопрос только к юзерам подобных таблиц- кто-нибудь РЕАЛЬНО пробовал снимать подобную нагрузку со своей системы?

Re: Таблица сечений кабеля, предохранителей

Некорректный вопрос. В нашей отрасли нагрузка импульсная. У нас важно, чтобы при приходе пикового сигнала напряжение питания не просело даже на доли вольта. Поэтому, в принципе, провод питания можно поставить и 6 кв.мм в расчёте на 100 А — он не расплавится. Но питание на громкости будет сильно проседать, соответственно звук будет не ахти. А нам это надо?

Re: Таблица сечений кабеля, предохранителей

Вычисление потери напряжения в кабеле для выбора сечения электрического кабеля

Re: Таблица сечений кабеля, предохранителей

Вопрос:
Рекомендованные сечения что отражают? Безопасноть по перегреву или отсутствие провалов по питанию ?Какой кабель из кабелей КГ наиболее гибкий и приятный (удобный) в работе?

Re: Таблица сечений кабеля, предохранителей

Взял вот отсюда тыц

особенно третий шаг помог. дистрибьютор как правило все ставят так как больше одного уся.

1 Шаг. Рассчитываем размер кабеля исходя из требования – максимальное падение напряжения питания не должно превышать 0,5 Вольт (международное требование), будем считать, что все сделано правильно, размер кабеля 2 GA при длине 4,5 метра нас устраивает. Падение напряжение при максимальной нагрузке не превысит 0,5 Вольт.

2 Шаг. Расстояние от плюсовой клеммы аккумулятора до потребителя превышает 40 сантиметров, факт, поэтому устанавливаем защитный предохранитель, естественно не далее 40 сантиметров от аккумуляторной клеммы, а лучше устанавливать главный предохранитель возможно ближе к плюсовой клемме аккумулятора. Его назначение, защитить питающий кабель от возгорания, например в случае аварии автомобиля (ДТП). Повреждение автомобиля может быть пустяковым, но пережатый питающий кабель приведет к короткому замыканию, возгоранию и уничтожению автомобиля. Номинал главного предохранителя определяется МАКСИМАЛЬНО возможным номиналом предохранителя для данного сечения кабеля. Для кабеля сечением 2 GA МАКСИМАЛЬНО возможный номинал предохранителя составляет 150 Ампер. А можно поставить предохранитель номиналом, допустим 100 Ампер, 80Ампер или 50 Ампер? До можно! Можно поставить любой предохранитель, при одном условии, что он НЕ БУДЕТ превышать номинал 150 Ампер (иначе смысл этого предохранителя пропадает). Общий максимальный ток, который может быть потреблен к примеру двумя усилителями (моноблок 80А и двухканальник 30А), составляет 110 Ампер, так что если поставить главный предохранитель номиналом 100 Ампер, существует вероятность того, что он будет срабатывать на пиках максимальной громкости, хотя правила не запрещают поставить предохранитель 100 Ампер. Исходя из вышеизложенного, я рекомендую выбрать предохранитель номиналом 150 Ампер, правила разрешают это делать, в случае нештатной ситуации он сработает.

3 Шаг. Питающий кабель доходит до дистрибьютора, здесь питание делится на две линии ( в некоторых случаях и больше). Первая питает моноблок (с внутренней защитой 40 х 2 = 80 Ампер). Вторая питает двухканальный усилитель (с внутренней защитой 30 Ампер). Для чего нужны предохранители внутри усилителя? Для того, чтобы защитить усилитель от перегрузки и для того чтобы защитить автомобиль от возгорания в случае короткого замыкания внутри усилителя. Выбор размера кабеля определяется максимальным падением напряжения на клеммах усилителя, чем меньше будет падение напряжения на питающих клеммах усилителя, тем лучше. Для питания моноблока возможен выбор двух размеров кабеля – 2 GA и 4 GA, если конечно он проходит по допуску падения напряжения, с большой долей вероятности (небольшая длинна кабеля от дистрибьютора до усилителя) можно сказать что пройдет. По правилам ЕММА, МАКСИМАЛЬНЫЙ номинал предохранителя определяется сечением кабеля. Если мы выбрали от дистрибьютора до усилителя кабель размером 2 GA, МАКСИМАЛЬНЫЙ номинал предохранителя не может превышать 150 Ампер – мы защищаем кабель на случай короткого замыкания, а не усилитель. А можно выбрать номинал предохранителя, например 80 Ампер? Без проблем, вниз можно идти куда угодно, хоть до 1 ампера, но логика подсказывает, что смысла ставить предохранитель меньше 80 ампер нет, потому, что в цепи усилителя стоит предохранитель 80 Ампер. Если выберем питающий кабель от дистрибьютора до усилителя 4 GA, МАКСИМАЛЬНЫЙ номинал предохранителя не должен превышать 100 Ампер, меньше, пожалуйста, логика подсказывает, что смысла ставить предохранитель меньше 80 ампер нет, потому, что в цепи усилителя стоит предохранитель 80 Ампер. А вот кабель размером 8 GA, использовать нельзя, даже если от дистрибьютора до усилителя 10 сантиметров, согласно правилам при использовании кабеля размером 8 GA, МАКСИМАЛЬНЫЙ номинал предохранителя не должен превышать 50 Ампер. Это означает, что если нас угораздит проложить кабель размером 8 GA, необходимо в дистрибьюторе установить предохранитель НЕ БОЛЕЕ 50 Ампер. Судьи к такой инсталляции отнесутся спокойно и даже не снизят оценку, формально все верно, но если чуть добавить драйва, будет сгорать предохранитель в дистрибьюторе. Правила IASCA, пошли другим путем. Размер кабеля определяется по таблице исходя из возможного падения напряжения, а номинал предохранителя определяется из ПРИНЦИПА, что номинал предохранителя не может превышать номинал предохранителя более чем на 20%, для нашего случая максимальный номинал предохранителя не может быть более 96 Ампер. Такого номинала нет, поэтому идем вниз до ближайшего значения 80 Ампер. Для двух соревновательных форматов устроит выбор размера кабеля (от дистрибьютора до усилителя) 2 GA или 4 GA и предохранитель 80 ампер. Выбор второго предохранителя определяется аналогично.
Будут вопросы, пишите в личку, буду дополнять пост.

Источники:

http://raschet.info/uslovija-vybora-plavkih-predohranitelej/
http://electricalschool.info/main/elsnabg/1412-primery-vybora-plavkikh.html
http://elektrik-a.su/zashhita-i-avtomatika/plavkie-vstavki-i-predohraniteli/diametr-provoda-predohranitelya-1526
http://ydoma.info/ehlektrotekhnika/ehlektricheskie-izdeliya/electricity-sechenie-provoda-dlya-predohranitelya.html
http://magnitola.org/o-kommutacii/15290-tablica-sechenii-kabelya-predohranitelei.html

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector